x^2+2x=99999

Simple and best practice solution for x^2+2x=99999 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+2x=99999 equation:



x^2+2x=99999
We move all terms to the left:
x^2+2x-(99999)=0
a = 1; b = 2; c = -99999;
Δ = b2-4ac
Δ = 22-4·1·(-99999)
Δ = 400000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{400000}=\sqrt{40000*10}=\sqrt{40000}*\sqrt{10}=200\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-200\sqrt{10}}{2*1}=\frac{-2-200\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+200\sqrt{10}}{2*1}=\frac{-2+200\sqrt{10}}{2} $

See similar equations:

| (x+12)+100+x=100 | | 3(u-3)-6u=12 | | -7(-4t+12)=2(18t+2)-16t | | 20x+3=120 | | 2(4j+20)=8-7j+17j | | 2(4j+20)=8–7j+17j | | 200x+5=240x+5 | | 4x+-30=-10 | | -12+20g+19g=-17g+4(15g+12) | | 1.5n=25(0.3) | | 5x+200=5x+240 | | 1.5n=25X0.3 | | 3x+5.2=15.8 | | -x^2+12x+36=0 | | 18z=3(7z-17) | | -8(-3u-9)+7u=-20+1+18u | | x^-2/3=12.25 | | -9h=-2(6h-3) | | 3(7y-11)=6(3y+4)-3 | | (9x-8)²-9=72 | | f-18=-4(f-18) | | 8(3m+19)=-13+9m | | 11.6r-15.52=18.32+15.57+14.3r | | -49=6-5c | | -23=5+4q | | -12.2g=-1.08-12.3g | | 11=-4+n/5 | | -2(18+6w)=6(2+6w | | -5+s/6=-5 | | 4(-5k-14)=-14k-20 | | -10=3a+2 | | -9+4c-8=-11-3(-2c+2) |

Equations solver categories